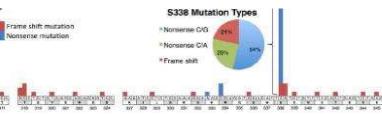
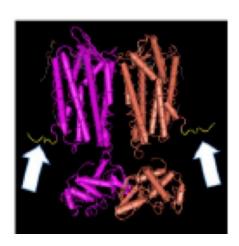

MACROGLOBULINEMIA DI WALDENSTROM

Alessandra Tedeschi Division of Hematology Niguarda Hospital, Mllano

WM TREATMENT

MYD88 in WM

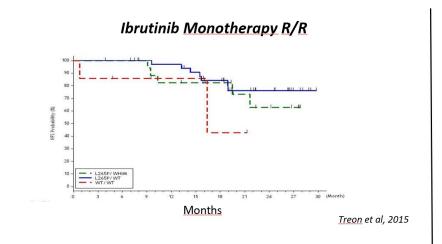


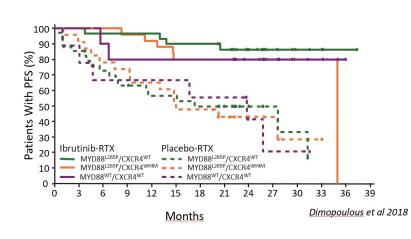

- ~ 95% of WM patients carry the somatic mutation of MYD88 (L265P)
- MYD88, IRAK1/IRAK4 and BTK are components of the Myddosome complex that activates NFKB
- Mutated MYD88 upregulates hematopoietic cell kinase (HCK) transcription and activates HCK via II-6. Activated HCK promotes survival through BTK, PI3K/AKT and MAPK/ERK1/2
- Evidence of cross talk between mutated MYD88 and BCR pathway with SYK activation that triggers STAT3 and AKT prosurvival signaling

CXCR4 in WM

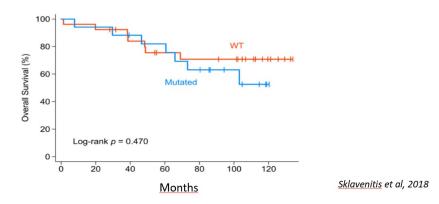
- Over 30 nonsense (NS) or frameshift (FS) C-tail mutations
- ❖ The most common CXCR4 mutation is S338X (~ 50% of all CXCR4 mutations)
- Similar to germline mutations typical of WHIM syndrome
- ◆ Detected in 30-40% of WM patients, and usually associated with MYD88

mutations

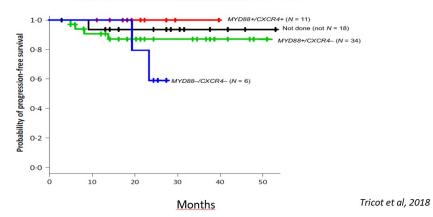

PATIENTS WITH CXCR4 mutations

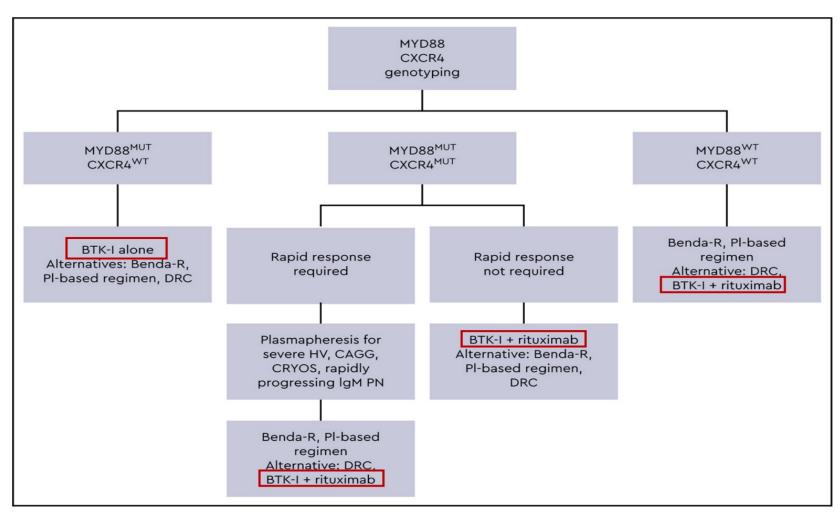

- √ higher IgM levels
- √ higher incidence of hyperviscosity
- √ higher BM infiltration
- ✓ shorter time to first treatment

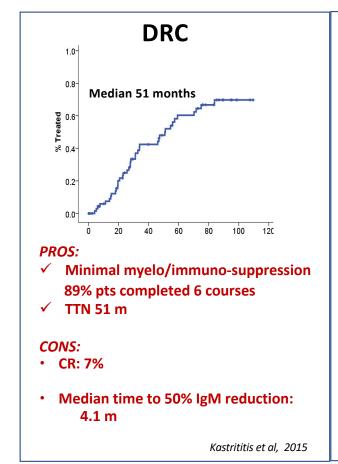
Treon SP et al, 2014; Poulain S et al, 2016; Schmidt J et al, 2015; Treon SP et al, 2015.

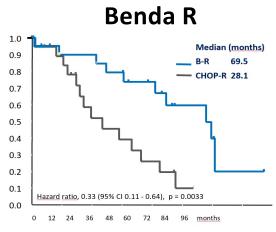

WM TREATMENT

PFS according to MYD88 & CXCR4 mutation status



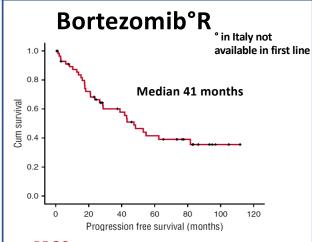

Bortezomib Rituximab First Line according to CXCR4


Bendamustine Rituximab First Line



WM: Genomic based treatment algorithm

Rituximab Combination Treatment


PROS:

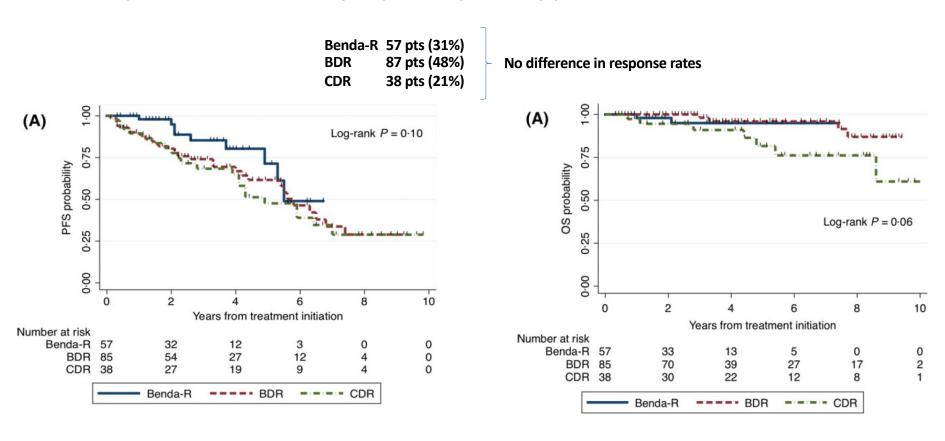
- ✓ Rapidly effective/ Prolonged PFS
- ✓ No impact from CXCR4 mut

CONS:

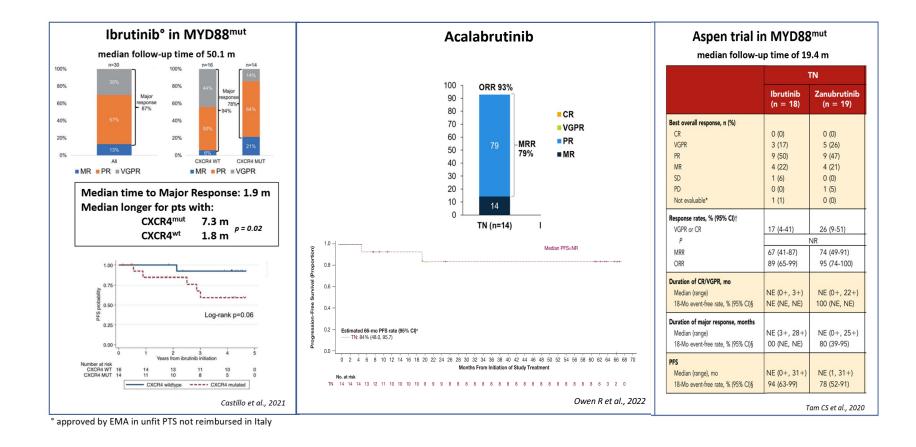
- Myelotoxicity/late infectious toxicities: dose reduction to70 mg/sqm or 4 courses
- Secondary MDS/LAM (?): ~0-3%

Rummel et al, 2013

PROS:


- √ Rapid IgM decrease
- ✓ Lower myelo/immuno-suppression

CONS:


High rate of Neuropathies

Treon et al, 2009-2015

Response and survival for primary therapy and maintenance rituximab

BTKi

Rituximab combination treatments

- Effective, Long Time to Retreatment
- Fixed duration
- Myelosuppression/Immunosuppression

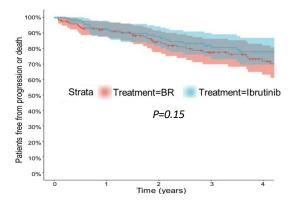
BTKi

- Effective, prolonged PFS
- **Continuous treatment**
- Resistance Development

Bendamustine rituximab (BR) versus ibrutinib (Ibr) as primary therapy for Waldenström macroglobulinemia (WM): An international collaborative study

Multi-institutional, international study in Europe and the USA Median follow-up: 4.2 years

347 TN pts:


- 208 BR
- 139 ibrutinib

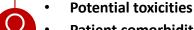
1:1 age-matched analysis of 246 pts MYD88^{mut} Ibrutinib (n=123) BR (n=123)

Significant higher responses with BR

Discontinuation due to AE: 13% BR and 33% ibrutinib

Progression-free survival

4-year OS: BR 95% (95% CI 91-99)


versus

Ibrutinib 86% (95% CI 80-93)

In a bivariate analysis adjusting for age and the treatment type only age emerged as a predictor for OS (HR 7.2, p=0.0001)

p=0.3

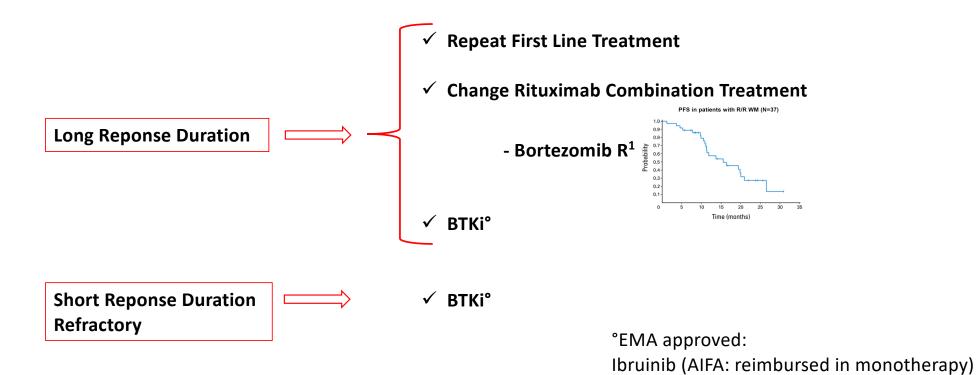
For patients with MYD88 L265P mutation, selection between the two approaches should be dictated by:

- Patient comorbidities
- Patient/clinician preference (parenteral fixed duration vs. continuous oral)
- Access to therapies

AE, adverse event; BR, bendamustine-rituximab; CI, confidence interval; HR, hazard ratio; MUT, mutant; OS, overall survival; PFS, progression-free survival; pts, patients; TN. treatment-naive: WM. Waldenström's macroglobulinemia.

Abeykoon JP et al. Abstract 7566 presented at the 2022 American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, USA, June 3-7, 2022.

UNFIT PATIENTS - UNMET CLINICAL NEED


Rituximab mono

ORR 44-65%

Short PFS

Effective in specific IgM related sisease symptoms

Gertz et al , 2009 Dimopoulous et al, 2010

Ibrutinib Rituximab (AIFA: not reimbursed)

Zanubrutinib (AIFA: pending)

Ibrutinib Phase II study

Median study follow-up: 59 months

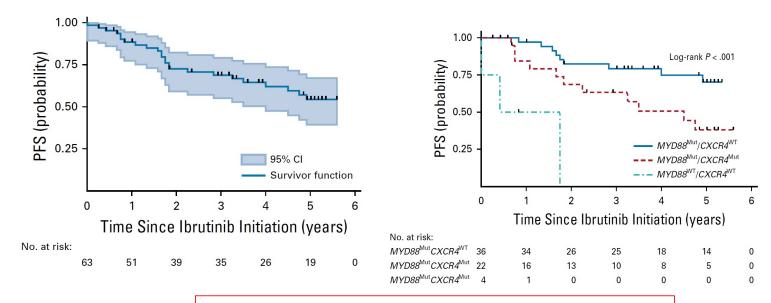
Baseline characteristics (ibrutinib n=63):

➤ Median age: 63 (44-86) yrs

➤ Median n° of prior therapies: 2 (1-9)

➤ 40% pts refractory to most recent therapy

> Median bone marrow involvement: 60%

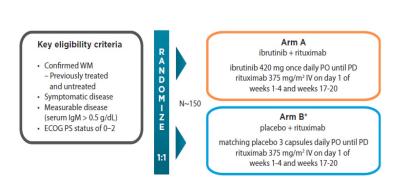

Variable	All	MYD88 ^{Mut} CXCR4 ^{WT}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{wt} CXCR4 ^{wt}	P
No. of patients	63	36	22	4	
Overall response rate	57 (90.5)	36 (100.0)	19 (86.4)	2 (50.0)	< .0100
Major response rate	50 (79.4)	35 (97.2)	15 (68.2)	0 (0.0)	< .0001
Categorical responses					
No response	6 (9.5)	0 (0.0)	3 (13.6)	2 (50.0)	< .0001
Minor response	7 (11.1)	1 (2.8)	4 (18.2)	2 (50.0)	
Partial response	31 (49.2)	18 (50.0)	13 (59.1)	0 (0.0)	
Very good partial response	19 (30.2)	17 (47.2)	2 (9.1)	0 (0.0)	
Median time to response, months					
Major response (≥ partial response)	1.8	1.8	4.7	NA	.0200

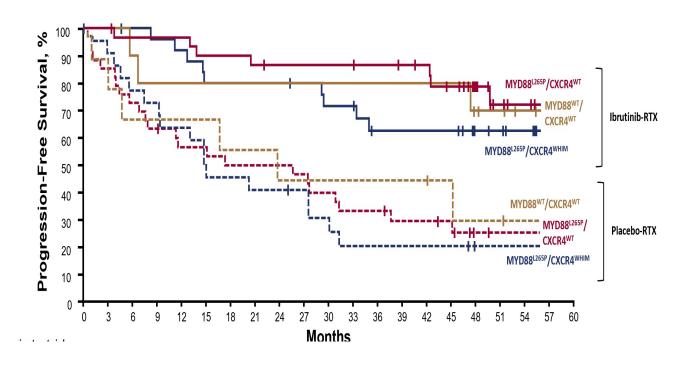
NOTE. Data presented as No. (%). Response rates, including categorical responses and median time to attainment of least a minor and a major response for all patients and those stratified by MYD88 and CXCR4 mutation status, are provided. P values denote three-way comparisons among genomic cohorts.

Abbreviations: Mut, mutant; NA, not applicable; WM, Waldenström macroglobulinemia; WT, wild type.

Ibrutinib Phase II study

Median study follow-up: 59 months




By multivariable analysis:

- BM involvement 50%,
- prior treatment with three or more lines of therapy
- presence of MYD88wt, and CXCR4Mut disease

were significant predictors for shorter PFS

Innovate Study: Ibrutinib plus R vs Placebo plus R (Innovate study)

Ibrutinib in R/R WM Clinical Trials

Adverse Events/Tollerability

Ibrutinib monotherapy: phase II study

Median FU 59 m

Hematological AE Grade ≥ 3

• Neutropenia: 15.9%

• Thrombocytopenia: 11.1%

AE of interest with BTKi

- Atrial arrhythmia any grade 12.7%
- Hypertension grade 2: 6%
- Pneumonia grade 2-4: 8%
- √ 8% off-study due to AE
- ✓ 19% dose reductions (cytopenia, dermatitis/rash, stomatitis)

Ibrutinib plus R: Innovate study

Median FU: 50 months

Hematological AE Grade ≥ 3

•Neutropenia: 13%

•Thrombocytopenia: 1%

•AE of clinical interest any grade

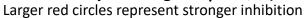
Atrial fibrillation 19%

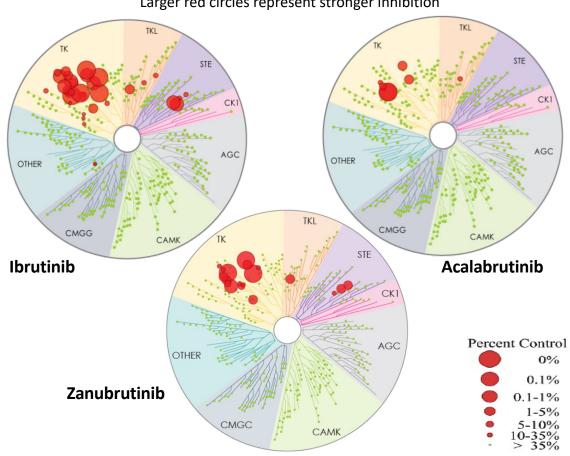
Hypertension: 25%

Infections≥3: 29%

√ 11% off-study due to AE

√ 23% dose reductions

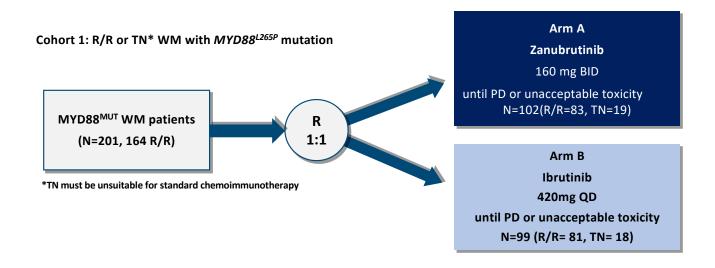

Second generation BTKi


Kinase Selectivity Profiles

 IC_{50}/EC_{50} (nM)

Kinase	Ibrutinib	Acalabrutinib	Zanubrutinib
ВТК	1.5	5.1	0.5
TEC	10	126	44
ITK	4.9	>1000	50
вмх	0.8	46	1.4
EGFR	5.3	>1000	21
ERBB4	3.4	16	6.9
JAK3	32	>1000	1377
BLK	0.1	>1000	2.5

Kinase Selectivity Profiling at 1 μmol/L (in vitro)

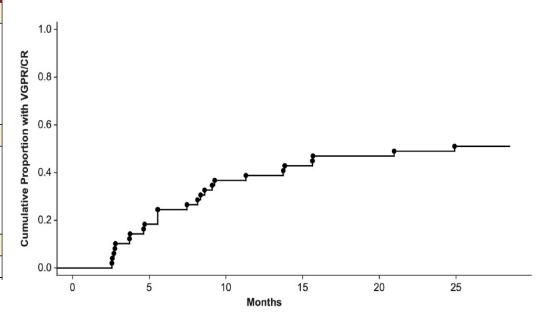


Kaptein. ASH 2018. Abstr 1871.

ZANUBRUTINIB IN WM

ASPEN STUDY: Zanubrutinib vs Ibrutinib

Primary endpoint:

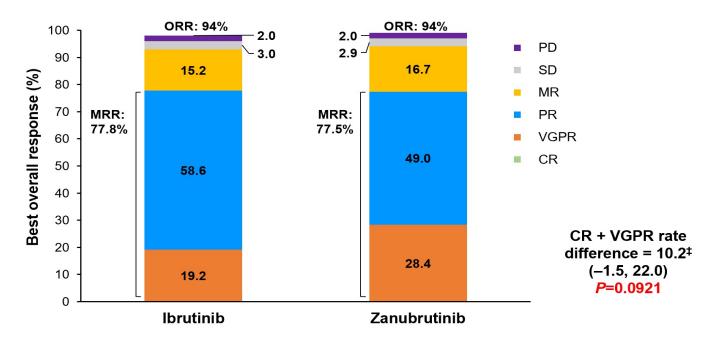

superiority of zanubrutinib in terms of CR or VGPR, per modified IWWM6, by independent review

WM=Waldenström's macroglobulinemia, BID=twice daily, CR=complete response, ITT=intent-to-treat, MRR=major response rate, MUT=mutation, PD=progressive disease, PFS=progression-free survival, PR=partial response, QD=once daily, R=randomization, R/R=relapsed/refractory, TN=treatment naïve, VGPR=very good partial response, WM=Waldenström's macroglobulinemia, WT=wild type.

Phase 1/2 BGB-3111-AU-003 Study Efficacy Results

	TN (n = 24)	R/R (n = 49)	Total (N = 73)
Duration of follow-up, median, mo	23.5	35.8	30.3
Best overall response, n (%) CR VGPR PR MR SD PD	0 8 (33.3) 13 (54.2) 3 (12.5) 0	1 (2.0) 24 (49.0) 14 (28.6) 7 (14.3) 3 (6.1)	1 (1.4) 32 (43.8) 27 (37.0) 10 (13.7) 3 (4.1)
VGPR/CR rate, % (95% CI)	33.3 (15.6-55.3)	51.0 (36.3-65.6)	45.2 (33.5-57.3)
VGPR/CR rate by genotype, % (95% CI) MYD88 ^{1265P} /CXCR4 ^{WT} (n = 39) MYD88 ^{1265P} /CXCR4 ^{WHIM} (n = 11) MYD88 ^{1265P} /CXCR4 ^{FS} (n = 6) MYD88 ^{1265P} /CXCR4 ^{NS} (n = 5) MYD88 ^{MT} (n = 8)			59.0 (42.1-74.4) 27.3 (6.0-61.0) 33.3 (4.3-77.7) 20.0 (0.5-71.6) 25.0 (3.2-65.1)
ORR (MR or better), % (95% CI)	100.0 (85.8-100.0)	93.9 (83.1-98.7)	95.9 (88.5-99.1)
MRR (PR or better), % (95% CI)	87.5 (67.6-97.3)	79.6 (65.7-89.8)	82.2 (71.5-90.2)

VGPR/CR Rate Increases Over Time (R/R Pts WM Cohort)


ZANUBRUTINIB IN WM

ASPEN STUDY: Zanubrutinib vs Ibrutinib Efficacy According to IRC

Median Follow-up 19.4 m

Best overall response in the ITT population*

Superiority in
 CR + VGPR rate for
 zanubrutinib compared
 with ibrutinib in the R/R
 population (primary study
 hypothesis) was not
 significant

Overall concordance between IRC and investigators = 94%. *Data cut-off: August 31, 2019. ‡Adjusted for stratification factors and age group.

CR, complete response; IRC, independent review committee; ITT, intention-to-treat; MR, minor response; MRR, major response rate; ORR, overall response rate; PD, progressive disease, PR, partial response; R/R, relapsed/refractory; SD, stable disease; VGPR, very good partial response.

Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020.

ZANUBRUTINIB IN WM

ASPEN STUDY: Zanubrutinib vs Ibrutinib Efficacy

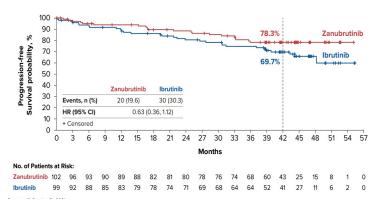
Follow-up 44 m

Responses by investigators

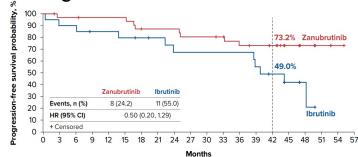
Median time to CR+VGPR: shorter for zanubrutinib 6.7 m vs ibrutinib: 16.6 m

Responses by CXCR4 status

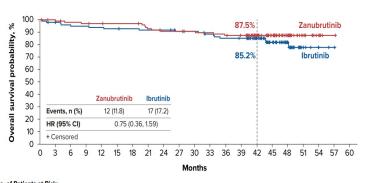
	CXCR4 ^{MUT}		CXCR4 ^{wT}	
	Ibrutinib (n=20)	Zanubrutinib (n=33)	Ibrutinib (n=72)	Zanubrutinib (n=65)
VGPR or better	2 (10.0)	7 (21.2)	22 (30.6)	29 (44.6)
Major response	13 (65.0)	26 (78.8)	61 (84.7)	54 (83.1)
Overall response	19 (95.0)	30 (90.9)	68 (94.4)	63 (96.9)
Time to major response, median (months)	6.6	3.4	2.8	2.8
Time to VGPR, median (months)	31.3	11.1	11.3	6.5


Primary objective ignificant superior CR+VGPR According to IRC with zanubruitnib: not achieved

Zanubrutinib in R/R WM


Phase III randomized study: Ibrutinib versus Zanubrutinib (Aspen study)

MYD88^{MUT}


Progression Free Survival

Progression Free Survival in *CXCR4*^{mut}

Overall Survival

 (40. of Patients at Risk:

 Canubrutinib
 102
 100
 97
 96
 95
 94
 94
 89
 86
 86
 85
 84
 82
 80
 65
 49
 27
 13
 5
 1
 0

 brutinib
 99
 96
 93
 92
 91
 90
 89
 88
 88
 85
 84
 80
 77
 76
 62
 43
 21
 7
 3
 1
 0

Dimopoulous M et al., EHA 2022

Zanubrutinib in R/R WM

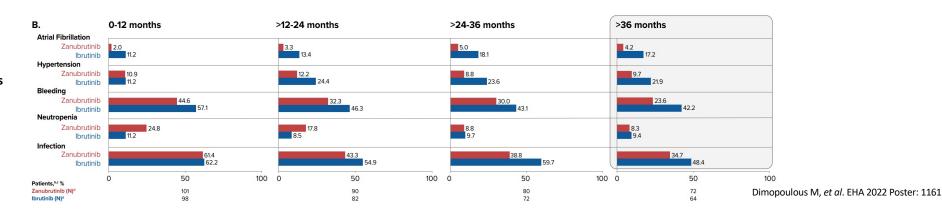
Phase III randomized study: Ibrutinib versus Zanubrutinib (Aspen study)

Long-Term Safety and Tolerability

Overall Safety Summary

	Cohort 1		
Category, n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)	
Patients with ≥1 AE	98 (100.0)	100 (99.0)	
Grade ≥3	71 (72.4)	75 (74.3)	
Serious	49 (50.0)	57 (56.4)	
AE leading to death	5 (5.1)ª	3 (3.0) ^b	
AE leading to treatment discontinuation	20 (20.4) ^d	9 (8.9) ^e	
AE leading to dose reduction	26 (26.5)	16 (15.8)	
AE leading to dose held	62 (63.3)	63 (62.4)	
COVID-19–related AE	4 (4.1)	4 (4.0)	

Advers Events of interest

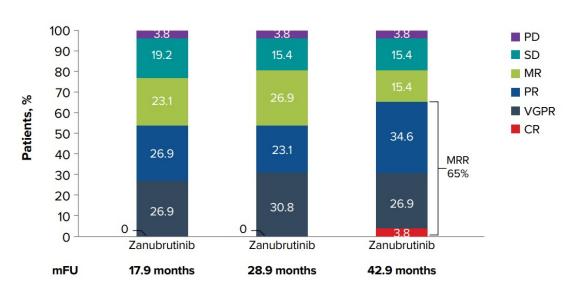

	All grades		Grade ≥3	
AEs,ª n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)
Infection	78 (79.6)	80 (79.2)	27 (27.6)	22 (21.8)
Bleeding	61 (62.2)	56 (55.4)	10 (10.2)	9 (8.9)
Diarrhea	34 (34.7)	23 (22.8)	2 (2.0)	3 (3.0)
Hypertension*	25 (25.5)	15 (14.9)	20 (20.4)*	10 (9.9)
Atrial fibrillation/flutter*	23 (23.5)*	8 (7.9)	8 (8.2)*	2 (2.0)
Anemia	22 (22.4)	18 (17.8)	6 (6.1)	12 (11.9)
Neutropenia*b	20 (20.4)	35 (34.7)*	10 (10.2)	24 (23.8)*
Thrombocytopenia	17 (17.3)	17 (16.8)	6 (6.1)	11 (10.9)
Second primary malignancy/ nonskin cancers	17 (17.3)/ 6 (6.1)	17 (16.8)/ 6 (5.9)	3 (3.1)/ 3 (3.1)	6 (5.9)/ 4 (4.0)

Bold text indicates rate of AEs with ≥10% (all grades) or ≥5% (grade ≥3) difference between arms.

Data cutoff: October 31, 2021. *Descriptive purposes only, 1-sided P < 0.025 in rate difference in all grades and/or grade ≥3.

*AE categories (grouped terms) of preferred terms by Medical Dictionary for Regulatory Activities v24.0. *Including preferred terms of neutropenia, neutropenia,

Adverse Events of Interest



Zanubrutinib in R/R WM

Aspen Trial Outcomes Cohort 2 MYD88WT

Responses Overtime

At 42 months:

PFS: 53.8% (95% CI: 33.3, 70.6)

OS: 83.9% (95% CI: 62.6, 93.7)

A Phase II, expanded access study of zanubrutinib in pts with WM

BGB-3111-216 is a single-arm, expanded access study of zanubrutinib in TN patients who were unsuitable for standard chemoimmunotherapy or pts with R/R WM

Treatment response

BOR, n (%)	Overall (N=41)		
Very good partial response	16 (39.0)		
Partial response	14 (34.1)		
Minor response	5 (12.2)		
Stable disease	2 (4.9)		
Progressive disease	4 (9.8)		
Major response rate	30 (73.2)		
Overall response rate	35 (85.4)		

Between December 2019 and June 2021:

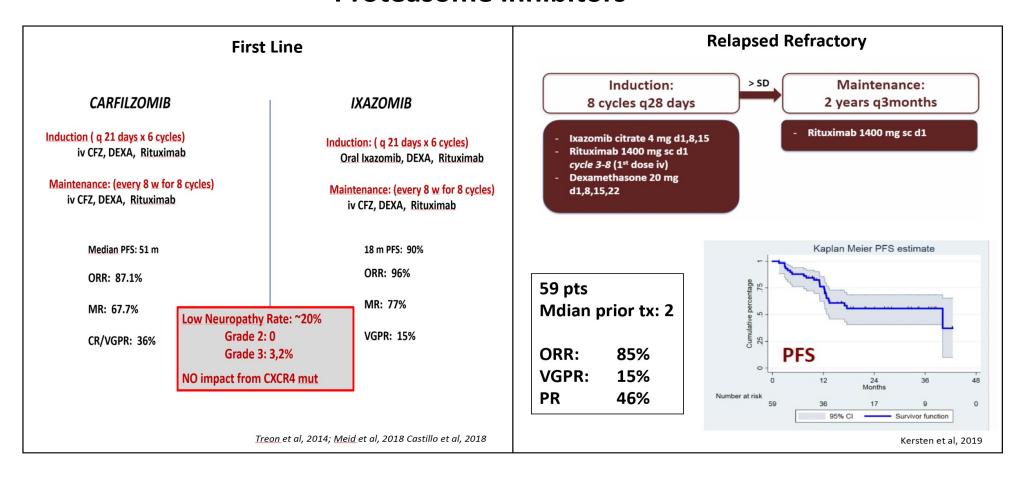
50 patients: 17 TN

33 R/R (median prior therapies = 2)

IPSSWM: 54% intermediate, 40% high-risk disease

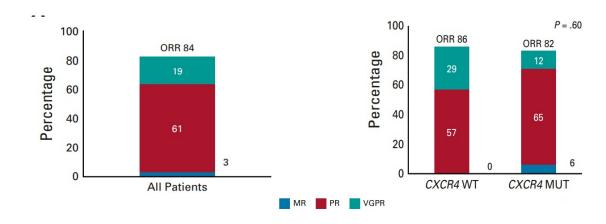
Median treatment exposure was 9.2 months (range: 1.4–20.0)

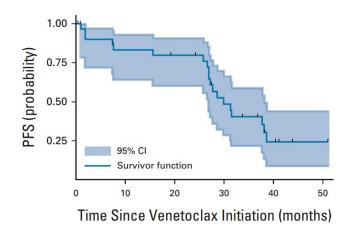
Grade ≥3 TEAEs of special interest were:

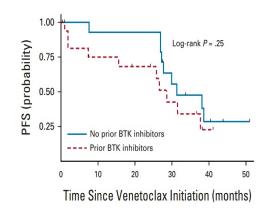

- Hypertension 8%
- Infection 8%
- Atrial fibrillation/flutter 2%
- Neutropenia 2%
- Second primary malignancy 2%

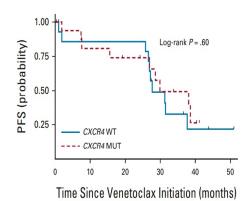
Real-world expanded access study results were consistent with the established zanubrutinib profile in WM or other B-cell malignancies when administered as oral monotherapy at 160 mg BID or 320 mg QD in pts with intermediate or high-risk R/R or TN WM


WHAT COMES NEXT IN WM?


Proteasome inhibitors




WHAT COMES NEXT IN WM?


Venetoclax Monotherapy

Castillo et al 2021

WHAT COMES NEXT IN WM?

Ibrutinib and Venetoclax in **Treatment Naïve WM** 24 months Combination treatments to allow therapy discontinuation → 22 months ✓ Pirtobrutinib (19 WM: ORR 68% no difference if prior BTKi) **New target agents Anti MALT1** Mato et al 2021 **Anti ERK in combination with Ibrutinib** Monotherapy: 23%ORR, median PFS 2 m **Daratumumab** Castillo et al 2020 In combination with Ibrutinib:ongoing **Carfilzomib Ibrutinib** European Study Ongoing: Phase II randomized study (CZAR-1) **Ibrutinib**

HOT NEWS IN WM CONCLUSIONS

FIRST LINE

- The choice of primary therapy should be personalized (consider toxicity, patients and disease characteristics)
- Allthough there is a lack of of prospective randomised studies consensus that DRC or Bendamustine Rituximab are preferred options
- Monotherapy may be a choice in unfit patients (BTKi)

RELAPSED/REFRACTORY

- BTKi best salvage regimens
 - Effective, prolonged PFS
 - > Zanubrutinib: Deeper responses

Better outcomes in MYD88wt and CXCR4mut

Better tolerability=adhererence dose intesnity

• Everyday clinical practice: Lack of salvage regimens after BTKi failure!!!!